ASI, Free Full-Text
Descrição
In the era of Industry 4.0, the idea of 3D printed products has gained momentum and is also proving to be beneficial in terms of financial and time efforts. These products are physically built layer-by-layer based on the digital Computer Aided Design (CAD) inputs. Nonetheless, 3D printed products are still subjected to defects due to variation in properties and structure, which leads to deterioration in the quality of printed products. Detection of these errors at each layer level of the product is of prime importance. This paper provides the methodology for layer-wise anomaly detection using an ensemble of machine learning algorithms and pre-trained models. The proposed combination is trained offline and implemented online for fault detection. The current work provides an experimental comparative study of different pre-trained models with machine learning algorithms for monitoring and fault detection in Fused Deposition Modelling (FDM). The results showed that the combination of the Alexnet and SVM algorithm has given the maximum accuracy. The proposed fault detection approach has low experimental and computing costs, which can easily be implemented for real-time fault detection.
NASP Advanced Skills Institute (ASI)
ASI Food Pantry - Associated Students, Inc.
Power Semiconductor Controlled Drives By Gk Dubey Pdf - Colaboratory
ASI, Free Full-Text
ImprintID on X: Join us NOW at the ASI DIgital EXPO! See our latest apparel: RAYOM SUBLIMATION! Also, chat with the team to get a free sample kit or questions answered. REGISTER
ASI Site Teacher Survey 12.16
ASI Food Pantry - Associated Students, Inc.
Addiction Severity Index Online - Fill Online, Printable, Fillable, Blank
ASÍ no jugamos – Imaginalco
PDF] Assessment To Aid in the Treatment Planning Process
Ernest Pons on X: 📌 (18/8) Free talks on authentic assessment and authentic feedback, by @ProfSallyBrown @kay_sambell @phillipdawson cc/ @EFeedskill @idp_iceub / X
de
por adulto (o preço varia de acordo com o tamanho do grupo)